Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release.

نویسندگان

  • O Shupliakov
  • H L Atwood
  • O P Ottersen
  • J Storm-Mathisen
  • L Brodin
چکیده

Synaptic glutamate release involves the accumulation of cytoplasmic glutamate in synaptic vesicles, whereafter it is released by triggered exocytosis. As glutamatergic terminals are known to be functionally diverse it was of interest to examine whether the presynaptic glutamate supply differs between individual axon terminals with distinct release properties. The glutamatergic terminals in the crustacean neuromuscular system system comprise a "phasic" type which shows fatigue of release during repetitive stimulation, and a "tonic" type which can maintain transmission for long periods. Quantitative immunogold analysis showed that the axons in a tonic nerve innervating slow muscles in the abdomen contained two times higher levels of glutamate labeling over axoplasmic matrix and over mitochondria, as compared to the corresponding elements in a phasic nerve. Similar results were obtained when adjacent phasic and tonic axons in a mixed nerve innervating leg muscles were compared. In the terminal regions of tonic and phasic axons the glutamate labeling differed correspondingly over axoplasmic matrix and mitochondria, while the synaptic vesicles showed a similar strong accumulation of labeling in both types of terminal. The level of labeling for glutamine, a glutamate precursor, was closely similar in phasic and tonic axons. The axoplasmic glutamate concentration was estimated to be in the low millimolar range, through comparison with coprocessed conjugates with known glutamate concentration. These results show that fatigue-resistant tonic axons and terminals contain higher levels of glutamate than fatiguable phasic axons, presumably representing an adaptation to the markedly different impulse activities in the two types of neuron. The axonal glutamate concentrations are in the range of the Km value for vesicular glutamate transport. Thus in tonic axons the high glutamate level appears to promote an efficient refilling of synaptic vesicles during sustained release, while in phasic axons the refilling should be slower which is compatible with an infrequent release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses.

Synaptic functional differentiation of crayfish phasic and tonic motor neurons is large. For one impulse, quantal release of neurotransmitter is typically 100-1000 times higher for phasic synapses. We tested the hypothesis that differences in synaptic strength are determined by differences in synaptic calcium entry. Calcium signals were measured with the injected calcium indicator dyes Calcium ...

متن کامل

Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses.

The efficacy of synaptic transmission varies greatly among synaptic contacts. We have explored the origins of differences between phasic and tonic crustacean neuromuscular junctions. Synaptic boutons of a phasic motor neuron release three orders of magnitude more quanta to a single action potential and show strong depression to a train, whereas tonic synapses are nearly unresponsive to single a...

متن کامل

Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons.

Phasic and tonic motor neurons of crustaceans differ strikingly in their junctional synaptic physiology. Tonic neurons generally produce small excitatory postsynaptic potentials (EPSPs) that facilitate strongly as stimulation frequency is increased, and normally show no synaptic depression. In contrast, phasic neurons produce relatively large EPSPs with weak frequency facilitation and pronounce...

متن کامل

The Bimodal Nature of Neurovascular Coupling

Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...

متن کامل

GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus.

After its release from interneurons in the CNS, the major inhibitory neurotransmitter GABA is taken up by GABA transporters (GATs). The predominant neuronal GABA transporter GAT1 is localized in GABAergic axons and nerve terminals, where it is thought to influence GABAergic synaptic transmission, but the details of this regulation are unclear. To address this issue, we have generated a strain o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 1995